

RENCONTRES SCIENTIFIQUES

Physicochimie des particules de l'air ambiant : effets sur la santé et investigation de la source «Trafic routier»

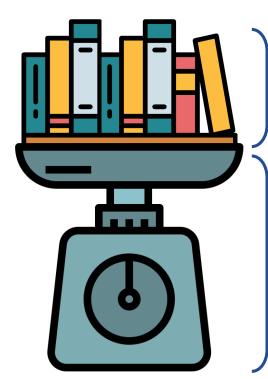
Margaux Sanchez, ANSES

Effets sanitaires des particules de l'air extérieur

- Effets sanitaires des PM₁₀ et PM_{2.5} déjà bien documentés
 - o Pollution air ambiant et particules, classement groupe 1 par le CIRC (2013)
 - Revue REVIHAAP de l'OMS (2013)
- Interrogations sur les effets selon la composition et les sources
- Depuis 2013, nombreuses publications sur le sujet, notamment en Europe

Effets sur la santé humaine des particules de l'air ambiant extérieur selon leurs composés, sources et granulométrie ? Expertise collective VOLET ÉMISSIONS du TRAFIC • Évolution rétro et prospective des émissions de particules selon le parc roulant français • Impacts des technologies sur les émissions de particules par la source « trafic routier » • Mise en regard avec les autres sources

CIRC : Centre International de Recherche sur le Cancer • REVIHAAP : Review of evidence on health aspects of air pollution • OMS : Organisation Mondiale de la Santé • PM : matière particulaire.



Quels sont les effets sur la santé humaine des particules de l'air ambiant extérieur selon leurs composés, sources et granulométrie ?

Littérature particules large donc REVIHAAP (2013) comme socle de connaissances

→ Littérature incluse dans la démarche : 2013-2016

Évaluation du poids de la preuve : revue systématique de la littérature + évaluation de la pertinence et de la qualité des « preuves » contenues dans la littérature → Adaptation du protocole standardisé proposé par l'OHAT

→ Intérêt : tous composés, toutes sources, toutes catégories sanitaires, toutes zones géographiques

REVIHAAP: Review of evidence on health aspects of air pollution • OHAT: Office of Health Assessment and Translation

Niveau d'indication sanitaire

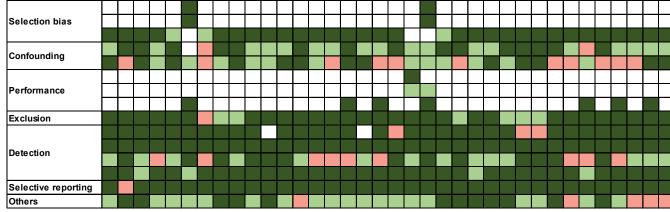
de chaque composé et source des particules → plausibilité d'une association causale entre un composé/source et la santé d'après le poids des « preuves »

- Formulation du problème
- 2 Inclusion des études
- 3 Données descriptives des publications
- 4 Qualité des publications

- 160 publications : 127 études chez l'Homme, 33 études d'expérimentation sur animal
- 37 composés/sources, 83 évènements de santé regroupés en 10 catégories sanitaires, 2 durées d'exposition
- Grille de lecture : populations, méthodes, résultats
- Niveau de confiance initial : 4 caractéristiques clés du design
- Cotation des risques de biais : gradient ++/.../--, 15 questions en 7 catégories (sélection, confusion, interprétation, détection...)

Calcul de la confiance initiale

Exposition contrôlée ? (0: non ; 1: oui)


Exposition précédant l'effet ? (0: non ; 1: oui)

Données individuelles pour l'effet ? (0: non ; 1: oui)

Groupe de comparaison ? (0: non ; 1: oui)

Confiance initiale ? = somme des réponses

Ex: 36 publications, carbone suie, court terme, cotation des risques de biais

Formulation du problème Inclusion des études Données descriptives des publications Qualité des publications 1038 corpus 160 publications

Regroupement en **corpus** selon composé/source, durée, évènement de santé, niveau de confiance initial **> Lignes de preuves** : informations de

→ **Lignes de preuves** : informations de même nature avec le même objectif

7

Formulation du problème

7 Inclusion des études

3 Données descriptives des publications

4 Qualité des publications

5
160 publications

Ex: 36 publications, carbone suie, court terme \rightarrow 11 lignes de preuves pour la santé cardio

			Évènements de santé	(Nombre d'études) Corpus			
	Carbone suie	(\$)	Mortalité (toute cause cardiovasculaire)	(6) Basagana 2015, Ostro 2015, Atkinson 2016, Ueda 2016, Lin 2016, Kim 2015			
	Carbone suie	(\$)	Hospitalisations (toute cause cardiovasculaire)	(8) Lipmann 2013 NPACT 3, Basagana 2015, Pun 2014, Samoli 2016, Sarnat 2015, Bell 2014, Kioumourtzoglou 2013, Winquist 2015			
	Carbone suie	(\$)	Altérations de la pression artérielle	(6) Morishita 2015b, Chen 2016, Morishita 2015a, Chung 2015, Mirowsky 2015, Wu 2013			
	Carbone suie	(\$)	Infarctus, évènements coronariens	(2) Kim 2015, Sarnat 2015			
	Carbone suie	(\$)	Insuffisance et congestion cardiaque	(2) Sarnat 2015, Winquist 2015			
	Carbone suie	(\$)	Altérations du rythme cardiaque	(6) Morishita 2015b, Chen 2016, Bartell 2013, Morishita 2015a, Sun 2015, Mirowsky 2015, Sarnat 2015			
	Carbone suie	(\$)	Accidents vasculaires cérébraux	(1) Lin 2015			
	Carbone suie	\$	Fonction vasculaire	(1) Morishita 2015a			
	Carbone suie	(\$)	Marqueurs inflammation systémique	(1) Steenhof 2014, Strak 2013			
	Carbone suie	(Marqueurs coagulation	(1) Strak 2013			
	Carbone suie	₩	Marqueurs de stress oxydant systémique	(2) Wu 2016, Wu 2015			

- Formulation du problème
- Inclusion des études
- Données descriptives des publications
- Qualité des publications
- Confiance des corpus et effet observé
- Traduction en niveau d'indication sanitaire

Définition du niveau d'indication sanitaire pour chaque ligne de preuve : Effet observé Inadéquate Faible Modéré **Fort** Pas d'effet Pas d'effet Inadéquate Inadéquate observé sanitaire **Confiance finale dans le corpus**

Corpus	Niveau de confiance initial	confiance	confiance	Confiance finale du corpus	Effet sur la santé ?
	4	Risque de biais	Amplitude	4	Effet observé vs.
A, B, C,	3	Incohérence inexpliquée	Dose-réponse	4 3	pas d'effet observé
D, E, F,	2	Invalidité externe	Confusion résiduelle	2	(selon données du
G	1	Imprécision Biais de publication	Cohérence Autres	1	corpus)

- Formulation du problème
- 7 Inclusion des études
- 3 Données descriptives des publications
- 4 Qualité des publications
- 5 Confiance des corpus et effet observé
- Traduction en niveau d'indication sanitaire
- **7** CONCLUSIONS : niveau d'indication sanitaire et comparaison à REVIHAAP
- Indications sanitaires pour chaque composés/sources et catégorie d'effet (santé cardiovasculaire, santé respiratoire, santé périnatale, etc.)
- Indication sanitaire chez l'Homme la plus élevée retenue pour comparaison avec REVIHAAP

Résultats

Ex: 36 publications, carbone suie, court terme \rightarrow 11 lignes de preuves pour la santé cardio

		Évènements de santé	(Nombre d'études) Corpus	Indications d'effe
Carbone suie	₩	Mortalité (toute cause cardiovasculaire)	(6) Basagana 2015, Ostro 2015, Atkinson 2016, Ueda 2016, Lin 2016, Kim 2015	forte
Carbone suie	₩	Hospitalisations (toute cause cardiovasculaire)	(8) Lipmann 2013 NPACT 3, Basagana 2015, Pun 2014, Samoli 2016, Sarnat 2015, Bell 2014, Kioumourtzoglou 2013, Winquist 2015	forte
Carbone suie	₩	Altérations de la pression artérielle	(6) Morishita 2015b, Chen 2016, Morishita 2015a, Chung 2015, Mirowsky 2015, Wu 2013	inadéquate ◀
Carbone suie	₩	Infarctus, évènements coronariens	(2) Kim 2015, Sarnat 2015	forte
Carbone suie	₩	Insuffisance et congestion cardiaque	(2) Sarnat 2015, Winquist 2015	modérée
Carbone suie	₩	Altérations du rythme cardiaque	(6) Morishita 2015b, Chen 2016, Bartell 2013, Morishita 2015a, Sun 2015, Mirowsky 2015, Sarnat 2015	faible <
Carbone suie	₩	Accidents vasculaires cérébraux	(1) Lin 2015	faible <
Carbone suie	₩	Fonction vasculaire	(1) Morishita 2015a	inadéquate <
Carbone suie	₩	Marqueurs inflammation systémique	(1) Steenhof 2014, Strak 2013	inadéquate ◀
Carbone suie	₩	Marqueurs coagulation	(1) Strak 2013	inadéquate <
Carbone suie	₩	Marqueurs de stress oxydant systémique	(2) Wu 2016, Wu 2015	inadéquate <

11 indications d'effet de l'exposition à <u>court</u>
<u>terme</u> au <u>carbone suie</u>
sur 11 <u>évènements</u> de <u>santé cardiovasculaire</u>

CONCLUSION:

indication « **forte** »
d'effet de l'exposition à
court terme au carbone
suie sur la santé
cardiovasculaire

Limites et incertitudes, interprétation

- Niveaux d'indication sanitaire
 - ✓ Identification du danger, traduisent si l'hypothèse d'un lien de causalité est plus ou moins plausible sur la base des publications évaluées
 - X Force de l'association, amplitude de l'effet, toxicité relative, probabilité de survenue
- Prudence dans l'interprétation de certains niveaux d'indication
 - Corrélation entre composés
 - Variabilité métrologique et définition des sources
- Recherche et inclusion des publications -> certains champs de littérature non exploités
 - Requêtes larges et peu spécifiques
 - Population générale et sous-populations uniquement
 - Essais *in vitro* ou *in silico* non inclus
 - HAP, endotoxines, échappements Diesel, échappements essence, source industrielle, combustion de biomasse

Conclusions (i)

(1)		Rapporté dans REVIHAAP :		Depuis REVIHAAP jusqu'en février 2016 :	
Composés des partic	ules de l'air ambiant	Niveau de preuve	Associations	Niveau d'indication sanitaire le plus élevé (N études humaines du corpus)	
	Carbone suie, carbone élémentaire	Preuves suffisantes	Oui	₼ 🏵 🙎	Fort (78) (+Exp.)
Matières carbonées	Carbone organique	Informations croissantes	Oui		Fort (37) (+Exp.)
	AOS (mélange)	Ø	Oui	_	Inadéquat (7) (+Exp.)
	HAP	Ø	Ø		Faible (4)
Particules ultrafines	(<100 nm)	Preuves encore limitées	Oui	₩	Modéré (14) (+Exp.)
Particules grossières	(PM _{2.5-10})	Preuves suggestives	Oui		Modéré (44)
Aérosols	AIS (mélange)	Ø	Oui		Faible (6)
	Sulfate	Ø	Oui	105	Fort (48)
inorganiques	Nitrate	Ø	Oui	₩ _	Fort (25) (+Exp.)
secondaires (AIS)	Ammonium	Ø	Ø		Faible (14)
	Nickel	Ø	Oui §		Fort (34) (+Exp.)
Métaux de	Zinc	Ø	Oui §	₩	Modéré (31)
	Cuivre	Ø	Oui §	₩	Faible (31)
transition	Vanadium	Ø	Oui §	<u> </u>	Fort (32)
	Fer	Ø	Ø	<u> </u>	Fort (31)
Silice		Ø	Ø		Modéré (30)
Endotoxines		Ø	Ø	₩	Modéré (5)
Potentiel oxydant		Ø	Ø	nh ®	Faible (6)

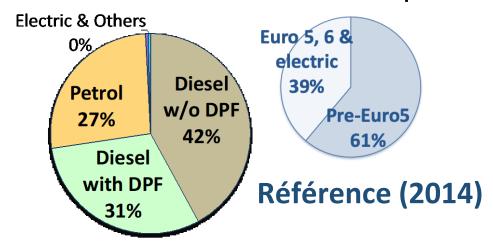
Conclusions (ii)

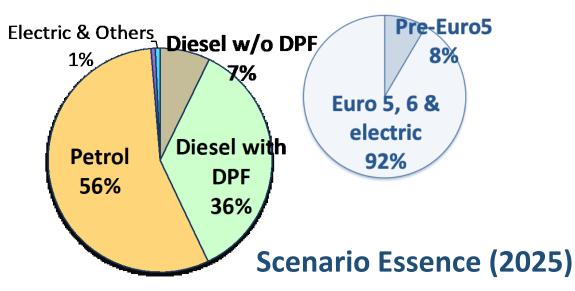
	\ /	Rapporté dans REVIHAAP :		Depuis REVIHAAP jusqu'en février 2016 :	
Sources des particules de l'air ambiant		Niveau de preuve	Associations	Niveau d'indication sanitaire le plus élev (N études humaines du corpus)	
	PM _{2,5} liées au trafic	Association probable	Oui	₩ 🖗	Modéré (16) (+Exp.)
	Carbone suie lié au trafic	Preuves suffisantes T	Ø		Fort (4)
	Échappements Diesel	Ø	Oui	d	Modéré (3) (+Exp.)
Trafic routier	Échappements essence	Ø	Oui		Modéré (1)
	Poussières de route, matière crustale	Association probable	Oui	&	Fort (16)
	Poussières de freins	Ø	Ø	6	Faible (1) #
	Charbon	Preuves solides T	Oui	S	Fort (7) (+Exp.)
Combustion	Produits pétroliers	Influence sur la santé	Oui et non		Modéré (10)
	Biomasse	Association probable	Oui §		Inadéquat (4) #
Industrias	Industrie	Ø	Oui	dh ₩	Faible (5)
Industries Métallurgie		Ø	Oui		Inadéquat (10) #
Poussières de désert		Ø	Oui	db	Modéré (3)
Sels, embruns marins		Suggestion d'absence d'effet	Oui et non	do	Faible (9)
Site de déchet	s dangereux	Ø	Non		Inadéquat (1)
Agriculture		Ø	Ø		Ø

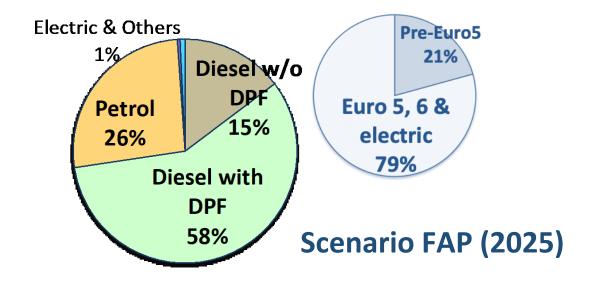
• Evolution rétro- et prospective des émissions et concentrations de particules selon le parc automobile français ?

• Impacts différenciés des technologies sur émissions et concentrations, par le « trafic routier »?

Cerea , IFSTTAR Méthode Scénarios parc et trafic France Île-de-France Émissions Émissions Emissions pollutants trafic et autres secteurs Île-de-France **Inventaires France** trafic routier & zone intra-A86 Outils Heaven/Copert4 *Imports* **Données** d' Europe météo Données météo concentrations de Concentrations polluants polluants Émissions des autres Outils Polyphemus secteurs (inventaire) Transfert de France Émissions biogéniques vers Ile-de-France **Concentrations de polluants Concentrations x densités de population (exposition)** -Émissions et concentrations France - Zones / villes contrastées - Analyses spatiales et temporelles (pics saisonniers, etc.)




Principaux scenarios


Référence 2014	Composition du parc et trafic actuels		
FAP	 Généralisation du FAP sur les véhicules Diesel Évolution vers normes d'émission Euro-5 et -6 Evolution quasi "au fil de l'eau" à l'horizon 2025 		
Essence	• Déclin marqué des véhicules légers Diesel au profit des essence (inversion répartition Diesel / essence)		

Technologies alternatives	 Promotion des véhicules électriques en milieu urbain 40% des ventes VP et 60% des VUL en 2025 Camions et bus ≤ Euro-III et deux-roues < 250cc convertis en électriques Rural et autoroutes : parc du scenario FAP 	
Ambition air	 En zone intra-A86 : Parc du scenario "technologies alternatives" Réduction de 17% du trafic (à mobilité constante, + de bus et 2-Roues) Hors zone intra-A86 : parc du scenario FAP 	

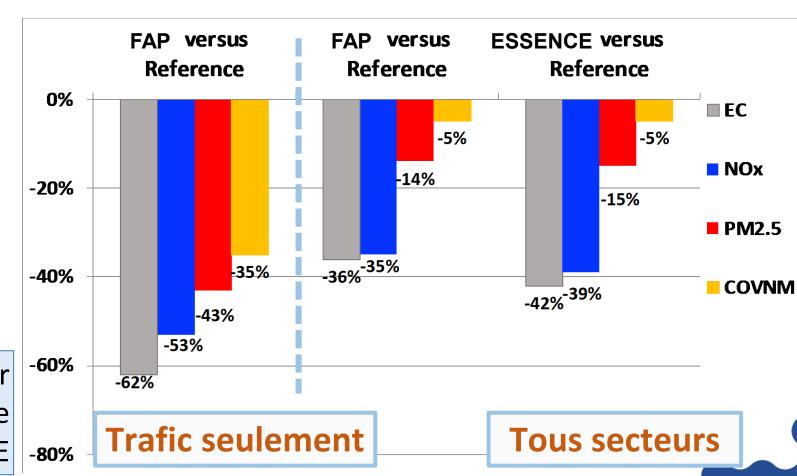
Évolution de la composition du parc (véh. légers en Île-de-France)

Scenario "Ambition Air"

- Réduction trafic (17% en intra-A86)
- Véhicules électriques
 - 4% véh. légers élec. en Île-de-France
 - 16% en Intra-A86
- Euro 5,6 et elec: 80% IdF 86% inA86

Véhicules récents en zone peuplée

Commaiore avaluer proces

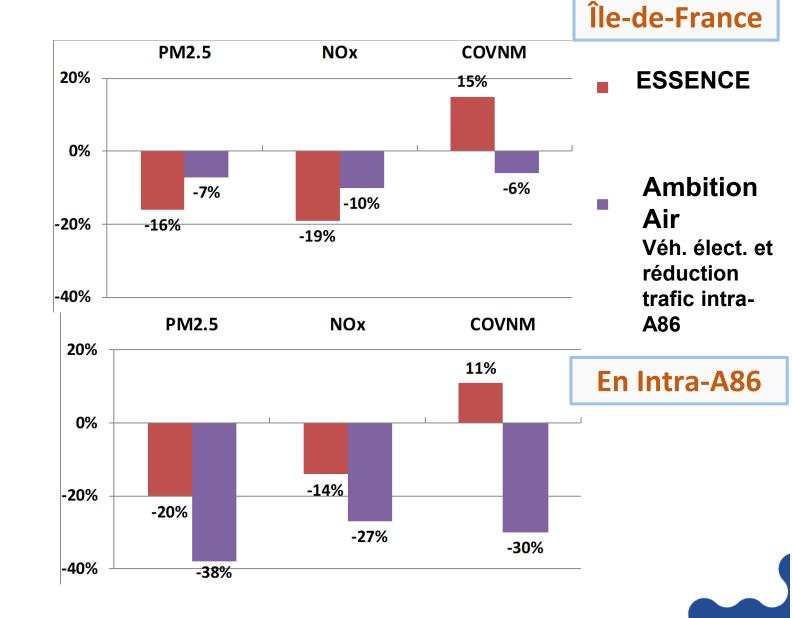

À horizon 2025, forte diminution des émissions du trafic

- -30% à -60% selon les polluants, France et Ile-de-France
- Les émissions « tous secteurs » baissent moins (de -5 à -40%)

Scénario ESSENCE:

- réduction supplémentaire des particules
 - en partie par renouvellement du parc
- Réduction moindre de COV et NH3

Réduction des émissions par rapport à la référence – scénarios FAP et ESSENCE



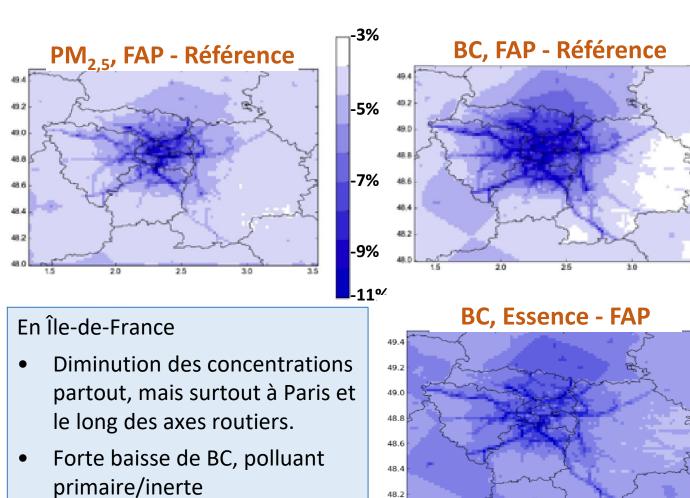
Émissions selon les scénarios (comparaison au scénario FAP)

Scénario ESSENCE:

 réduction supplémentaire des émissions de particules et NOx

 La promotion des véhicules électriques et la réduction du trafic induisent des réductions d'émission marquées en zones denses / peuplées (intra-A86)

À horizon 2025, diminution des concentrations moyennes annuelles


Scénario Essence accentue les

baisses

- importante pour des polluants « du trafic » (-30 % carbone suie, NO₂)
- limitée pour PM_{2,5}, PM₁₀
 (-4 à -6%) et fractions
 organique et inorganique
 formées dans l'atmosphère
- Pour O3, les concentrations peuvent augmenter (urbain, hiver)
- Faibles écarts
 entre scénarios
 (±6 % BC, 0 à 2% autres)
- Léger avantage Essence

-15%

-20%

-25%

-30%

-25%

-40%

0%

-5%

-10%

Autres résultats

- Diminution importante des occurrences de fortes concentrations
- VG-OMS long terme des PM2.5 reste dépassée sur la quasi-totalité du territoire.
- Scénario ESSENCE (versus FAP)
 - L'augmentation des COV et NH3 n'induit pas d'augmentation des concentrations de PM
 - Explication : précurseurs NO2 et COSV > moindre formation d'aérosols secondaires
 - Augmentations ou diminutions de O3 accentuées par le scénario ESSENCE
- La diminution des émissions de COV diminuerait PM2.5 dans Paris
 - Explication : COV > oxydants > moindre formation d'organiques secondaires
 - Enjeu : réduction des émissions de COV des autres secteurs
- Autres analyses et apports des travaux
 - Exposition (Île-de-France), Rétrospective émissions et concentrations (Île-de-France et France)
 - Mise en perspective avec d'autres travaux (ZAPA, PDU-Île-de-France, PREPA)
 - Analyse critique de l'approche (avantages, limites, incertitudes) et Socle méthodologique, données / outils

En résumé – principales conclusions et recommandations

- Effets sanitaires des particules
 - Cibler : particules ultrafines (< 100 nm, Nombre), carbone suie et carbone organique ... en complément de $PM_{2,5}$ et PM_{10}
 - Agir sur les principales sources d'émission :
 - trafic routier, combustion de charbon, de produits pétroliers et de biomasse
 - Besoin de données sur
 - agriculture, transport maritime, pollution aéroportuaire
 - sources naturelles (pollens, COV biogéniques précurseurs d'AOS, etc.)
- Qualité de l'air et scénarios d'évolution du parc automobile
 - Evolution insuffisante de la qualité de l'air ambiant dans les agglomérations
 - Considérer conjointement évolution technologique ET réduction du trafic, transfert modal et modes actifs dans les zones peuplées
 - Méthodologies d'évaluation
 - pollution proximité, autres polluants, scénarios prospectifs multisectoriels,...

RENCONTRES SCIENTIFIQUES

Merci de votre attention

Travaux réalisés avec le soutien de l'ANSES

Lien vers les rapports complets :

https://www.anses.fr/fr/content/pollution-de-l'air-nouvelles-connaissances-sur-les-particules-de-l'air-ambiant-et-l'impact

